
WHITE PAPER

Kicking the legacy modernization can down the road costs
significantly more every year. This white paper looks at
the challenges of maintaining legacy applications, the
modernization options available and our refactoring approach.

Don’t kick the COBOL can down a crumbling road

Recently, the US Government Accountability
Office (GAO) released an eye-opening
report which found that roughly 80% of the
government’s $90 billion IT budget is spent on
maintaining aging technology , and the increasing
cost is shortchanging modernization. The report
illustrates how kicking the legacy modernization
can down the road costs significantly more every
year which has resulted in a significant decline in
development, modernization, and enhancement
activities between 2010 and 2019. While many of
the findings in the report are astonishing, such
as the revelation that the Defense Department’s
Strategic Automated Command and Control
System, which is used to send and receive
emergency action messages to U.S. nuclear
forces still uses 8-inch floppy disks for storage,
the vast majority of the legacy upkeep falls into
the COBOL realm. Among available options, we
assert that automated refactoring is the fastest,
most cost-effective, and safest way to alleviate
reliance on legacy infrastructure, databases, and
the application code that supports them.

Vintage is in, but restoration has its limits
The public version of the GAO report identified
ten federal agencies' systems most in need of

modernization based on attributes such as age,
criticality, and risk. GAO then analyzed agencies’
modernization plans for said systems against key
IT modernization best practices. While the names
of the systems were redacted in the report, the
details paint a clear picture: COBOL. The most
common thread among them is COBOL, which
is cited as a risk due to the dwindling number of
people available with the skills needed to support
it.

The U.S. Air Force’s "System 1" provides
configuration control and management to
support wartime readiness and operational
support of aircraft, among other things.
Unfortunately, the costs associated with
maintaining the system have been steadily
increasing due to poor documentation, aging
infrastructure, and the shrinking availability of
manpower to maintain the legacy code. As a
result, Air Force officials expect annual costs to
rise from $21.8 million in 2018 to approximately
$35 million in 2020.

The Department of Education’s "System 2"
processes and stores student information and
aids in the processing of federal student loan
applications. First implemented in 1973, the

https://www.gao.gov/assets/700/699616.pdf
https://www.gao.gov/assets/700/699616.pdf

Don’t kick the COBOL can down a crumbling road
system runs approximately one million lines of
COBOL on an IBM mainframe. Officials stated that
the agency would like to modernize the system
to eliminate their reliance on COBOL, simplify
user interactions, improve integration with other
applications, respond to changing business
requirements more quickly, and decrease
development and operational costs.

The Department of the Treasury’s Internal
Revenue Service’s (IRS) "System 6" houses
taxpayer data. Many IRS processes depend
on output, directly or indirectly, from this data
source. This system is written in Assembler
and COBOL, complicating maintainability, and
suffering from the risk of staff attrition. Ultimately,
it has become increasingly more expensive to
operate, and due to talent scarcity, the agency
is forced to pay a premium to hire staff or
contractors with the knowledge to maintain these
systems.

From nightmare to reality
The dawn of 2020 brought with it an unexpected
compelling event of enormous proportions-an
ensuing global pandemic. Nearly every person on
the planet has been affected in some way, from
shifting to work from home models overnight,
to losing their jobs entirely. Millions have fallen
ill, and hundreds of thousands continue to lose
the battle against COVID-19. The impact of the
pandemic is immeasurable, and many federal,
state, and local agencies found themselves in high
demand, where the risks their legacy systems
posed quickly became a reality.

One of New Jersey's mainframes, which supports
its unemployment platform, buckled under the
pressure of a 1,600% rise in applications, from
9,500 the week of March 14 to 156,000 the week
after. These legacy systems can struggle to
adapt to new user cases or unexpected surges
in demand because of their undocumented
monolithic nature, long complex waterfall cycles,
limited extensibility and integration capability,
and most notably the diminishing workforce
capable of writing the mid-twentieth century
code that powers them. In a press conference,
Governor Phil Murphy lamented, “"We have
systems that are 40-plus years old. There'll be lots of
postmortems and one of them on our list will be how
the heck did we get here, when we literally needed

[COBOL] programmers."

The big iron behemoth
Realizing the state of agility required to weather
major compelling events is a difficult prospect,
especially for agencies tethered down by
cumbersome systems and processes with a
deep heritage such as mainframes. The impact
and breadth of these legacy systems is not to
be underestimated. They play an enormous
role in governments and business around the
globe today, particularly among those with long
histories. Many find it astounding that 80% of the
world’s corporate data resides in or originates
from mainframes running technology that is more
than seventy years old. To some, it is difficult to
understand why agencies continue to use such
old technology for their critical applications,
especially in an era of accelerating change.

The reason is quite simple. The legacy
systems are stable and robust. They perform
satisfactorily and continue to meet the functional
requirements around which they were originally
built. However, these systems have passed
through many hands over many years, often
without proper documentation of features or
functional relationships. As the technology,
infrastructure, and architecture of the agencies
and businesses around them changes, the
burden of retaining them will continue to grow.

Exorbitant operating costs
Mainframes are expensive. Exactly how
expensive depends on several factors including
size, complexity, usage, and the latest licensing
contracts with major vendors. Based on insights
from our customers, a mainframe's annual per
MIPS cost falls somewhere between $2,000 and
$5,000 USD. A comparable workload can run in
a FedRAMP compliant environment such as the
AWS GovCloud (US) for just 8-12% of that, which is
a material difference.

The "2020 Mainframe Modernization Business
Barometer Report" found that on average,
organizations could save $31 million if they
modernized the most urgent aspect of their
legacy systems, and while individual results can
certainly vary, modernization is a proven cost
reduction strategy.

https://www.oneadvanced.com/en-us/modernization/content/business-barometer-report/?utm_medium=Content&utm_source=Brochure&utm_campaign=SurveyAdvBrochureUS&utm_content=Application%20Modernisation%20US
https://www.oneadvanced.com/en-us/modernization/content/business-barometer-report/?utm_medium=Content&utm_source=Brochure&utm_campaign=SurveyAdvBrochureUS&utm_content=Application%20Modernisation%20US

Don’t kick the COBOL can down a crumbling road
Diminishing skills & resources
Developers who understand procedural
languages such as COBOL are becoming
increasingly difficult to find. Simply put, people
who know how to work with COBOL and
mainframe technology are steadily retiring. To
make matters worse, most universities no longer
offer mainframe instruction since no one would
dream of using procedural languages like COBOL
for greenfield development projects anymore.
According to a 2018 Forrester Consulting study,
enterprises have lost an average 23 per cent
of specialized mainframe staff in the last five
years, a whopping 63 per cent of these vacancies
remain unfilled. As the shortage of experienced
programmers grows, the risk of relying on a
shrinking talent pool and the cost of these
resources will continue to rise.

Sluggish response to competitive pressure
Lack of frameworks, productive and advanced
IDEs, debugging tools, and test automation
add significant time to development cycles
on the mainframe. Organizations relying on
maintaining and extending legacy systems using
waterfall development methods have a very
long time-to-market for new business needs and
respond slowly to challenges from customers,
constituents, or competitors. In recent years, the
successes of digital transformation, underpinned
by modern agile practices such as continuous
integration and DevOps, have highlighted the
troubles associated with sluggish development
cycles in legacy environments. According to
the 2020 Mainframe Modernization Business
Barometer report, 85 per cent of respondents
preferred agile development practices over
traditional waterfall methods, with 33 per cent
stating that modernizing would allow them to be
more reactive to market changes.

To make matters worse, the cumbersome
nature of these old systems has significant
downstream effects. Even when new applications
are developed using modern technologies,
integrating these with core business functionality
running on mainframes is a highly constrained,
time intensive, and risky task.

What are your options?

Maintain status quo
The first choice for any scenario is always to
do nothing, to ‘let it play out’. The inherent
complexity and perceived risk of upending critical
mainframe applications can be unnerving for
many organizational leaders. Unfortunately, as
time passes, dealing with legacy systems will
become increasingly difficult – less available
expertise, more application development backlog,
and more money spent on licensing and rare,
expensive talent.

Third party off-the-shelf solutions
This approach focuses on replacing mainframe
application functionality with packages and
components available from third party vendors.
A positive of this approach is a reduced amount
of source code maintenance since most vendors
shoulder responsibility for fixing production bugs
and implementing new functional enhancements.

However, commercial off-the-shelf (COTS)
packages offer standard domain business
processes that often differ from the homegrown
mainframe application they are meant to replace.
Reuse of existing business logic is not possible;
therefore, some level of business process re-
engineering or customization of the third-party
solution will be required. Both processes can be
time consuming and expensive. In our experience,
the older and more critical a legacy system is, the
higher the likelihood of significant customization
requirements.

Rehosting
Rehosting, sometimes referred to as
replatforming, is ideal for organizations that
wish to retain legacy code as-is while moving
away from difficult to integrate non-relational
databases and expensive legacy infrastructure.
With rehosting, the application code is shifted
into an emulation environment (a proprietary
piece of software) where it can run on modern,
distributed systems without change. The
underlying legacy database is commonly
refactored to a relational model during the
system migration, opening it up for integration

https://www.oneadvanced.com/en-us/modernization/content/business-barometer-report/?utm_medium=Content&utm_source=Brochure&utm_campaign=SurveyAdvBrochureUS&utm_content=Application%20Modernisation%20US
https://www.oneadvanced.com/en-us/modernization/content/business-barometer-report/?utm_medium=Content&utm_source=Brochure&utm_campaign=SurveyAdvBrochureUS&utm_content=Application%20Modernisation%20US

Don’t kick the COBOL can down a crumbling road
with modern business intelligence tools and
systems. The rehosted code interacts with the
new database through the emulation software
and can reside on modern infrastructure on
premises or in the AWS Cloud.

Refactoring
Refactoring is a broad term that is used to
describe an array of solutions, all focused on
changing the original codebase to meet the
organization’s needs. These solutions can be
categorized across an automation gradient, with
transcoding at one end and manual rewriting at
the other.

At one end of the refactoring gradient lies
automatic migration solutions that use
transcoding, or line-by-line conversion of the
source language (COBOL in our example) to the
target language (Java for example). This type of
conversion is often described as “compile-time
conversion” and tends to be inexpensive and
highly automated. In a transcoding model, a
piece of licensed software is used to recompile
online and batch applications from COBOL into
Java so they can be deployed to an industry-
standard Java application server. The Java these
solutions produce is colloquially referred to as
“JOBOL” because by their nature, compiler-driven
conversions produce a procedural Java, not truly
object-oriented code. These solutions cannot
accurately adhere to common object-oriented
concepts and paradigms such as encapsulation,
abstraction, modularization, and loose coupling.

Procedural, line-by-line JOBOL is heavily
constrained, offering very few options for
performance tuning, optimization, and extension
because it is virtually un-maintainable “spaghetti
code”. As a result, many compile-time transcoding
providers suggest that developers maintain
and extend the original source COBOL, compile
into Java using their transcoder, and deploy into
modern operating environments, rather than
attempt to maintain the JOBOL natively. In some
cases, transcoding solution providers offer
proprietary software tools to aid developers stuck
working with the resulting procedural Java, but
these tools are limited in scope and output more
JOBOL, reducing the hope of code maintainability
further, while locking customers into additional
software and licensing. While compile-time
transcoding solutions are inexpensive and highly

automated, the JOBOL they produce is the least
performant and maintainable on the refactoring
automation gradient.

Conversely, manual rewrites inhabit the opposite
end of the gradient as the least automated,
most expensive, and highest-risk solution for
modernization through refactoring. Significant
time and effort is required to recreate the
legacy systems’ wealth of functionality with
newly written application code that is stable
and error-free- the scope and complexity of
this effort is often vastly underestimated.
Legacy systems such as mainframes house
business-critical applications which have been
the subject of extensive change and constant
evolution over decades, passing through
countless development cycles. Most of these
environments are not well documented, and
their complexity and interconnectedness
is universally underestimated. The blind
spots this phenomenon creates is often the
harbinger of extreme scope creep, leading to
disastrous results. In one example, the California
Department of Motor Vehicles embarked on
an effort to modernize their core systems by
rewriting them in 1991. After six years of effort
with nothing to show for it, the project, clocking
in at nearly $16 million USD over-budget, was
cancelled.

Rewrite projects can take years to complete,
and by the time the new applications are ready
to deploy, the systems they were designed to
replace have changed so significantly, their newly
developed replacement is obsolete before it
hits production. Even in optimal circumstances,
rewrites require extensive code freezes to
effectively deploy which are simply unattainable.

On balance, at the center of the refactoring
gradient, is tailored, rules-based automated
refactoring, the sweet spot for modernizing
procedural COBOL to object-oriented languages
such as Java.

We take a unique approach to achieving the
highest quality, lowest-risk, tailored, rules-based
automated refactoring solution possible. COBOL-
to-Universal (CTU), a proprietary automated
toolset, combined with proven methodologies
and refactoring processes, reduce the risk and
pain of migrating away from COBOL and its
surrounding infrastructure.

https://www.latimes.com/archives/la-xpm-1994-04-27-mn-50941-story.html

Don’t kick the COBOL can down a crumbling road
Our Approach
Our Automated COBOL Refactoring solution,
harnessing a powerful combination of proprietary
COBOL-to-Universal (CTU) software and an
iterative transformation methodology, delivers
a modern Java application based on fully
maintainable open systems. The CTU refactoring
software has processed billions of lines of code
for many of the world’s largest enterprises and
governments, and is actively and continuously
evolving with each modernization project to
maximize code quality, reduce risk, and ease the
migration away from legacy.

This quality-focused, rules-based automated
refactoring approach, reduces cost, allows
for deeper integration, and unshackles
organizations from outdated languages and
expensive infrastructure, while unlocking infinite
customization potential to meet any business
requirements. Once the application is refactored,
developers can change and extend application
functionality directly and easily using object-
oriented concepts and paradigms.

Legacy modernization is a complex undertaking
that involves far more than dropping code
into conversion tools and pressing compile.
It is important to understand the source
environment, determine potential challenges
and how to overcome them prior to conversion,
iteratively test the results, and tune the tooling
to adjust for any necessary changes in the
refactoring process. It is the combination of a
proven modernization methodology enacted
by domain experts harnessing powerful tools
that sets us apart. As such, each automated
refactoring initiative we deliver follows a proven,
multi-phase methodology.

Assess and design
As the primary transaction engines for core
business functions, the applications will have
inevitably been augmented, tweaked, and
extended multiple times by a multitude of
developers. The longer the system has been
around, the more technical debt accumulated,
and the less the organization knows about its
inner workings. The trouble is, making changes
or decommissioning systems without a full
understanding of the impact is incredibly risky,
leading mainframes to remain in place far longer
than they should.

To make matters more complicated, the way in
which companies and governments operate has
fundamentally changed. For example, people do
not purchase airline tickets the same way they
did in 1987. However, they are probably using the
same underlying systems to reserve seats from
their smart phones that their travel agents and
airline reps used.

Ideally, stakeholders should have total visibility
into the legacy environment to inform platform
decision making, raise awareness around
potential transformation challenges, and gain a
clear understanding of integrations and ancillary
dependencies. With a comprehensive picture
of the contents and interrelationships between
application components, CIOs, enterprise
architects, project managers, and developers
will realize a significant reduction in the scope,
cost, and risk of migrating away from the
legacy environment. We deliver this clarity and
omniscience by beginning every modernization
effort with a legacy systems assessment, which
informs target environment design.

In the assess and design phase, organizations
discover artifacts they did not know they had,
relationships they did not realize existed, and
assets that are no longer in use. It consists of two
key activities. First, the automated application
assessment, which clearly defines the current
state of applications and databases in the legacy
environment. To prepare for this phase, Advanced
Modernization Platform as a Service (ModPaaS)
for AWS is installed in a customer-managed
environment through the AWS marketplace.
ModPaaS is used to access and house source
code and other shared materials for the
assessment and subsequent transformation
process. eav is the toolset used to process the
automated application assessment, in which
all application components are cataloged,
cross-referenced, and missing components are
identified, collected, and added to the inventory
in an iterative fashion. At the conclusion of the
assess and design phase, the customer may
retain access to eav and ModPaaS, where all
original source code can be archived for future
access and traversal by customer stakeholders.

Next, our team highlights topics that could be
troublesome during maintenance or

https://modernsystems.oneadvanced.com/our-services/cobol/
https://modernsystems.oneadvanced.com/software/modpaas/

Don’t kick the COBOL can down a crumbling road
augmentation, which must be addressed prior
to the transformation effort. Once these areas
of concentration are identified, customer teams
and our experts work together to implement
appropriate solutions. A few examples of
common areas of concentration in COBOL
assessments include resolution for non-fully
qualified names, scoping of variables, and
planning for the handling of pre-processor
statements.

The second part of the assess and design process
is an operational and infrastructure assessment.
This cross-references application assessment
findings to ensure a complete understanding
of the entire legacy landscape, seeding
hardware and other operational requirements
for the appropriate target distributed systems
architecture. We work with cross-functional
teams to understand necessary service levels,
performance requirements, and ancillary
software products in use, informing target
environment design decisions such as the size
and composition of the infrastructure hardware,
systems software, monitoring apparatus, data
storage, etc.

In many cases, organizations have mature,
standards-driven and widely used DevOps
tool chain pipelines in place. In some cases,
the continuous integration (CI) and continuous
development (CD) philosophies that drive DevOps
are new to the agency or the development
team responsible for the applications being
modernized. During the operational and
infrastructure assessment, we will work with
client stakeholders to understand whether the
preference is to deliver into a DevOps pipeline
or not, and if so, whether assistance is needed in
developing it.

If a pipeline exists, we can tailor the delivery
process to accommodate its constraints. If not,
we will work with the customer to design and
create the target platform DevOps tool chain
pipeline including the pre-delivery test cases
as well as standard reporting, basic approval
workflow, and the configuration of typical role
types. This process follows five steps:

 > Stage 1: CI/CD framework - Select and
deploy a CI/CD framework based on the
tools of the customer's choice (e.g. Je.g.
“AWS CodePipeline or alternative third party
solutions such as Jenkins)".

 > Stage 2: Source Control Management
(SCM) - Integrate the preferred Source Code
Management (SCM), e.g. AWS CodeCommit
or alternative third party solutions such as
GitHub with the AWS CodePipeline, solution
with CI/CD tooling based upon the selected
pipeline architecture

 > Stage 3: Build Automation - Configure and
deploy the selected build automation tools
(e.g. AWS CodeBuild or alternatives third party
solutions such as Maven, Gradle, Cake, etc.)
across the deployment pipeline based on
clean, compile, test, and deployment location
customer preferences, and on the agreed-
upon pipeline architecture.

 > Stage 4: Application Hosting Environment
- Configure the application target environment,
servers/containers, and appropriate
management systems and processes (e.g.
Tomcat, Jetty, Docker, Kubernetes).

 > Stage 5: Code Testing Coverage - Assist in
deployment and configuration of code testing
frameworks (e.g. JUnit, EasyMock, Selenium,
etc.) and code quality tools (e.g. SonarQube,
Cobertura, Emma, etc.) that appropriately
interface with the chosen CI/CD environment
to maximize deployment automation.

We will also work with customer specialists to
deploy and configure middleware automation
tools (IaC) such as “Ansible, Chef, Puppet, AWS
CloudFormation, and others,", and others, while
consulting with subject matter experts from the
legacy and target environments along the way.

At the conclusion of the assess and design phase,
a complete catalog of the legacy environment
is delivered, including areas that require special
consideration by the teams, which are isolated
and summarized so that they can be addressed
when the transformation processes begins.
Details regarding use of third-party utilities and
products in both batch and online applications
are organized and presented alongside findings
and decisions pertaining to target operational

Don’t kick the COBOL can down a crumbling road
and infrastructure setup. All of this information
is harnessed to coordinate a refined project plan,
which kicks off the transformation process.

Transform
The transform phase begins after the assess
and design process is complete and a strategy
for moving ahead is established. During this
phase, we perform pre-delivery functional testing
and delivers assets into the target DevOps
pipeline based on pre-defined work packets.
While customer teams build, test, and deploy
these work packets in the target environment,
we refactor the next work packet, iterating until
the entire in-scope application estate has been
transformed.

Transformation focuses on two components,
the data and the applications. Automated
data migration is performed alongside the
automated application refactoring activities. In
addition, the target environment and relevant
operational infrastructure is built out, alongside
any necessary operational data migration
activities. Throughout the transformation,
precious business logic from the legacy system
is preserved, enabling deeper integration, cloud
migration, and customization to meet business
requirements.

Automated data migration
Data migration is an important component
of every legacy modernization project. Each
environment is handled differently, from pre-
relational to relational migrations, to targeting
a variety of database types, and everything in
between. Although the tasks associated with
this phase vary widely across automated COBOL
refactoring projects, steps include the de-
construction of the legacy database definitions
into metadata artifacts and entry of additional
rules based upon customer workbook entries
which include column and table naming date
type formats, overrides for redefines and group
level clauses, and preferences for each statement
and clause in the resulting DDL. The generation
of brand new DDL defines a complete relational
database providing the same data access as the
legacy database.

Automated application refactoring
Our automated refactoring philosophy is centered
on producing functionally equivalent, human-
maintainable, quality-driven code positioned
on AWS cloud ready target frameworks and
platforms. COBOL-to-Universal (CTU), our
proprietary toolset, powers the automated
refactoring process.

Translating a procedural language such as
COBOL, to an object-oriented language such as
Java presents a myriad of challenges. Thus, CTU
was designed around these absolutes:

 > The refactored application must behave
exactly the same as the original application
and produce the same results

 > The refactored application must be human-
maintainable and follow object-oriented
concepts and paradigms

 > The refactored application must perform as
well or better than the original application in
the target modern environment

 > The resulting applications should be cloud-
ready and delivered through an automated
code pipeline using a standard DevOps
toolchain and best practices

CTU deconstructs the legacy codebase to isolate
source code and classify down to the field level.
It then refactors the assets using customized
rules based on customer requirements and
standards. This refactoring process includes
flow normalization, code restructuring, data
layer extraction, data remodeling, and packaging
for reconstruction. Upon reconstruction, new
object-oriented code structures are generated
and deployed into the target environment and
enabled by CTU’s native Java framework. To find
out more about the refactoring process, take a
look at our Automated Application Refactoring
paper.

Operational and infrastructure implementation
During the transform phase, all operational
and infrastructure components required by
the modernized applications are provisioned,
configured, implemented, and integrated. This

https://modernsystems.oneadvanced.com/factsheets/automated-cobol-refactoring/?utm_medium=CampaignPage&utm_source=Content&utm_campaign=CobolRefactoringFactSheet

Don’t kick the COBOL can down a crumbling road
includes the underlying hardware platform,
and all required third-party software. QA/Test
environments are built out first, and applications
are tested to ensure complete functionality
before deploying to the final target environment.
If necessary, specific operational data migration-
related tasks are completed during this phase,
including the migration of required batch job
schedules, security profiles, and any archived
data.

Test, deploy, and support
The test and deploy phase begins with the receipt
of work packets through the automated DevOps
toolchain as they are delivered from iterative
modernization activities in the transform phase.
If issues arise, the work packet is passed back to
us where we review the code, adjust our tooling,
reprocess the work packet, and deliver back
into the DevOps pipeline to resume testing and
deployment. This process repeats until the entire
modernized estate has been deployed.

Testing is a critical phase of any modernization
project and typically accounts for over 50 per
cent of the entire modernization effort. Although
key business logic is retained through automated
refactoring, the underlying application is adapted
and refactored to operate within the new
target operating environment. Thus, a detailed
validation of the migration is extremely important,
and the best means of achieving that validation is
with thorough testing. Validation testing typically
includes stages such as functional (regression),
non-functional (performance), integration, high
availability, disaster recovery, security, and user
acceptance testing. A major misconception is that
testing starts only once refactored applications
become available to validate. Testing begins
prior to even starting down the modernization
path, by ensuring that appropriate test plans
and test-related artifacts (test cases, test data,
test results, etc.) are available to conduct the
necessary testing and validation of the migrated
applications. To assist with this, we offer a test
strategy workshop (typically on-site) during the
assess and design phase. Test-related areas of
concentration are discussed, and solutions are
addressed. A key deliverable of the test strategy
workshop is a test strategy report providing an
overview of the testing approach with detailed

responsibilities, milestones, and ownership
of each of the test-related service activities.
Testing, deployment, and support activities can
vary widely. As such, the processes described in
the following paragraphs are intended to be a
baseline.

Testing
Our testing service activities include pre-delivery
testing against a mutually defined subset of the
refactored COBOL application using a test plan
with documented test scenarios provided by the
customer. A customer-led baseline for testing
service activity defines and executes tests on
the existing system to capture and record the
expected results. We then run the tests against
the same data on the refactored system, identify,
investigate, and fix discrepancies in the expected
behavior of the modernized application by
modifying the automated tooling rules to ensure
the refactoring process is fully automated. Pre-
delivery testing consists of select test cases from
the available functional tests, which represent
parts of the application. We also provide
application discrepancy correction throughout
the different customer-led testing stages, where
any problems found related to the application
and data migration are fixed.

Testing requires the greatest amount of customer
involvement of any phase of the project. Thus,
the impact of customer resources during testing
play a major role in the overall success of the
project, both in completeness of the testing,
and the duration of the project itself. In addition
to offering the test strategy workshop, we can
also provide support in the form of a test lead,
test manager, and additional test resources to
augment a customer test team.

The automated refactoring process does not
require code freezes, which is a major risk
reducer for customers, however, it is necessary
to bring the new codebase up-to-date. Therefore
once pre-delivery testing is complete and
any discrepancies in application behavior are
resolved, we perform a code refresh to ensure
that any changes that took place in the legacy
application environment during the conversion
process are accounted for, refactored into the
target language and environment, and tested.

Don’t kick the COBOL can down a crumbling road
Deployment and support
We work closely with customer teams to ensure a
smooth and error-free transition into production.
Part of this transition includes the cooperative
construction and testing of a go-live production
cutover plan to reduce the potential risks
associated with application deployments. The
go-live plan typically includes multiple dry run
cutovers and fall back procedures to validate
and fine tune the cutover process. Information
is captured related to the time, to implement
the production cutover (and the time to delay
specific processing while the final transition is
taking place), ensuring that all data is migrated
and ready for production in the time allotted. The
plan also assesses overall go-live readiness and
validates the documented process. We provide
on-demand assistance during the warranty
period following the deployment, as well as post-
migration support of the modernized application.

Conclusion
Companies and governments are struggling with
aging applications and the rusty infrastructure
they call home. CIOs understand the inevitability
of migration to modern languages and platforms,
but these systems and the resources supporting
them are complex and highly intertwined with
core business operations and processes. As a
result, IT leadership often chooses to “kick the
can” of modernization down the road, assuming
that the risks of doing anything are greater than
the risks of fiddling with these integral systems at
all.

The reality however, is that the risk of doing
nothing far outweighs the risk associated
with optimizing or modernizing the existing
environment through informed decision-making.
These systems are ticking time-bombs, poised to
explode at any given moment with unforeseen

impact due to lack of understanding, visibility, and
a skilled resource pool to clean up the mess.

Through automated refactoring, organizations
are able to retain the business rules and look
and feel of a legacy system while extricating
themselves from procedural code very few
people understand, and infrastructure that costs
more every year to keep in operation. However,
not all modernizations are created equal. When
choosing a modernization provider, it is important
that the tools and services they have at their
disposal meet the needs of the organization and
supporting resources in the future.

With more than 35 years of experience and
over 500 successful migration projects, we are
uniquely qualified to deliver turnkey COBOL
modernizations using our proven process and
software, ensuring a smooth transition to the
target state.

More information
w modernsystems.oneadvanced.com e hello@oneadvanced.com

UK +44 0333 230 1884

Ditton Park, Riding Court Road Datchet,
Slough, Berkshire, SL3 9LL

US +1 855-905-4040

3200 Windy Hill Road, Suite 230 West,
Atlanta, GA 30339

© Advanced 2020. All rights reserved. Modern Systems Corporation t/a Advanced, registered in Delaware, USA is a wholly owned subsidiary of
Advanced Computer Software Group Limited t/a Advanced. A list of trading subsidiaries is available at www.oneadvanced.com/legal-privacy.
Advanced recognizes the trademarks of other companies and respective products in this document.

