
FACT SHEET

Our automated COBOL refactoring philosophy is centered
on producing functionally equivalent, human-maintainable,
quality-driven code positioned on Cloud ready target
frameworks and platforms. COBOL-to-Universal (CTU), our
proprietary toolset, powers the automated refactoring process.

Automated COBOL Refactoring

Translating a procedural language such as
COBOL, to an object-oriented language such as
Java, presents a myriad of challenges. Thus, CTU
was designed around these absolutes:

	> The refactored application must behave
exactly the same as the original application
and produce the same results

	> The refactored application must be human-
maintainable and follow object-oriented
concepts and paradigms

	> The refactored application must perform as
well or better than the original application in
the target modern environment

	> The resulting applications should be Cloud-
ready and delivered through an automated
code pipeline using a standard DevOps
toolchain and best practices

CTU deconstructs the legacy codebase to isolate
source code and classify down to the field level.
It then refactors the assets using customized
rules based on customer requirements and
standards. This refactoring process includes

flow normalization, code restructuring, data
layer extraction, data remodeling, and packaging
for reconstruction. Upon reconstruction, new
object-oriented code structures are generated
and deployed into the target environment and
enabled by CTU’s native Java framework.

CTU’s Native Java Framework
CTU-refactored applications are underpinned
by a Java framework containing a collection
of libraries supporting common functions
(application lifecycle, marshalling, data I/O,
logging, MVS utility replacement, support
functions, etc.) that exist in the legacy system
but are not directly translatable to a modern Java
environment. The framework effectively gathers
all common functionality into a single place,
significantly reducing the amount of generated
code while improving the separation of concepts.

CTU’s Java Framework is a collection of libraries
without native components, designed to work
with both standard Java Edition and Enterprise
Edition platforms. It is retained by the customer,
in their modernized environment, and can be

Automated COBOL Refactoring
used as a Maven repository or optionally
licensed with the source code, allowing the client
to enhance and extend as necessary to meet
ongoing modernization requirements.

The Framework provides support for emulating
key COBOL and JCL functionality such as the
translation of COBOL functions to equivalent
Java functions, support for sequential files, VSAM
to relational modelling, and Online Transaction
Processing (OLTP) support (e.g. CICS API, TD
Queues, TS Queues, TP session, etc.). In addition,
the Framework handles configuration settings,
data types not supported in Java, marshalling
of read/writes for data types, EBDIC to ASCII
encoding, and sessions to retain application
context on a per thread basis.

The Framework also leverages the Spring Batch
runtime, a light-weight open source framework
used for supporting batch processing (symbolic
replacement, COND evaluation, return code
handling, GDG support, SYSOUT redirection,
utilities, etc.).

High-Level Architecture
Human maintainability is a complex problem for
automation to solve, particularly when taking a
procedural codebase to an object-oriented one.
Java developers work in a universe of indirection,
where applications reference databases without
knowledge of the structure or contents therein.
Conversely, there is no layering or indirection with
COBOL applications running on mainframes. To
accommodate for this architectural difference,
CTU refactors the source into a three-tier
application.

Put simply, each COBOL program (online and
batch) is refactored to a Java class with equivalent

functionality and exposed as a service (business
logic layer), which interacts with the data access
layer through the CTU framework. All database
and file operations from the original COBOL
code are externalized in data access object
(DAO) classes and Java Persistence Architecture
(JPA) mapping files (the data access layer). The
presentation layer is generated by delivering the
legacy screens as HTML pages in a web browser
using Angular, and batch JCL is refactored to JSR-
352 XML, which interacts with a distributed job
scheduler of the customer’s choice.

These layers can be implemented using a
variety of products to accommodate for specific
customer architectural requirements while
providing the robustness necessary for high
volume, high-uptime applications.

The resulting refactored code is readable and
maintainable, following Java standards and object-
oriented concepts. The COBOL business logic
and comments are preserved, and individuals
familiar with the original application can easily
understand the refactored code.

Basic Mapping
CTU wields a strong mapping component that
produces an object-oriented model that best
represents the procedural source. The code
produced by this mapping component can be
further refined after the modernization project
to optimize fit and function with the overall
framework and architecture of the target
environment.

The table below illustrates the basic mapping
from procedural COBOL to object-oriented Java.

Automated COBOL Refactoring

The basic mapping from procedural COBOL
to object-oriented Java

Mapping decisions also extend to structural
considerations around copybooks such as clone
detection and handling. Since CTU deconstructs
the source, it effectively eliminates copybooks,
aggregating cloned code (code that appears in
repetition across the estate) into programs and
methods as necessary. The result of automated
structural decisions such as clone detection and
handling is a smaller target codebase footprint
and more maintainable Java.

Ultimately, CTU is designed to optimize mapping
decisions to use the objects which best fit
the overall architecture of the system while
prioritizing performance and maintainability.

Data Access Layer
The logic used to handle files and databases
is decoupled from the main COBOL structure
using a Data Access Object (DAO) design
pattern. By using a standard Java design pattern,
CTU ensures the refactored code is easier to
understand, maintain, and extend. The DAO
assures communication with external data
sources (files and databases), while the Data
Transfer Objects (DTO) are used to transport
data between the program and external data

source. Thus, modifications can be made to the
DAO implementation without altering decoupled
modules of the application.

Java Persistence Architecture (JPA) is used to
facilitate multiple database engines, where
database DTOs are created from SQL table
definitions and all queries in a DAO are
externalized to a yml mapping file, further
simplifying the maintenance and extension of
queries.

Clone detection and handling applies to the data
access layer in much the same way that it does
in the program structure. If the COBOL code
contains more than one SQL statement of the
same type (even across different programs), only
one Java method will be created inside the DAO.
In this instance, the DTOs contain all information
related to a specific SQL table, and the DAOs
represent a collation of different SQL statements
related to the table. In sequential file access
scenarios, clones are detected and handled in
such a way that the DAOs use framework calls to
IFileOperations to emulate the original COBOL,
and file DTOs are created from COBOL variables
associated with each descriptor.

Automated COBOL Refactoring
Business Logic Layer
During the restructuring of code to create the
business logic layer, CTU refactors each COBOL
program to a Java class. This class encapsulates
all working storage fields and paragraphs, and
exposed as a service to the main entry point in
the run() method.

Each paragraph becomes a private method in
the Java program class where program structure
and comments are preserved to simplify
maintenance. Program flow is normalized and
GOTOs, EXIT paragraphs, and dead code (flow
and data) are removed. Normalization replaces
GOTOs and fall through behavior with a statically
determined code, resulting in minimal change to
the program structure, while retaining the original
conditional statements and constructs.

Each copybook that contains only data will be
translated to a single class which can be reused
across the entire application.

COBOL data structures are analyzed and
remodeled to maximize encapsulation, reuse, and
readability, while minimizing memory footprint for
better utilization. Deeply nested data definitions
are collapsed to primary data fields. When group
access is required, CTU will generate a method
capable of reading and writing information to and
from these fields.

In the interest of maintainability, all primitive data
types are translated to native Java types, with one
exception, the decimal type is translated to the
CTU Framework class AfDecimal. The following
table shows how some COBOL data types are
translated to Java native counterparts:

Conditional names (88 level) are a bit more
complicated and are either refactored to Java
booleans or to classes. Conditional names with
multiple values and 88 levels with only two
values that do not contain boolean values (Y/N,
YES/NO, TRUE/FALSE) are refactored to a set of
named constants in an enum-like class. 88 levels
with only two values that are represented with
boolean values are refactored to Java boolean
types.

Presentation Layer
The primary aim of the presentation layer
transformation is to maintain functional
equivalence. To achieve this, CTU essentially
refactors 3270 screens to HTML5 equivalents
that look and feel the same as their legacy
counterparts. Screen layouts are maintained,
PF and return keys are fully supported using
JavaScript event handling routines, and arrow
key navigation between fields is retained as-is,
removing the burden of re-training end users.

CTU's automated refactoring process takes
legacy screens to Angular using fixed-width fonts
and absolute positioning of fields and text labels
to enable easy deployment on any application
server. Although BMS maps are represented
as web pages in the refactored environment,
the data fed into the new web interface is the
same as that which fed the legacy screen. While
the refactored screens retain the same screen
layout and functionality, these web pages can
be re-structured to take advantage of modern
web design (HTML5, JavaScript, CSS) for a more
modern user experience.

How COBOL data types are translated to Java
native counterparts

Automated COBOL Refactoring
When it comes to security, a basic authentication
mechanism is provided out of the box. While the
default authentication module is customizable,
an API is also provided to accommodate all
authentication requirements.

JCL Handling
JCL is handled with priority placed on functional
equivalence and human maintainability in much
the same way as its COBOL counterparts. Jobs
and procedures (PROCs) are refactored to JSR-352
XML and supported using Spring Batch along
with replacements for common utilities (IKJEFT01,
IDCAMS, IEBGENR, IEBCOPY, SORT, etc.) so
that the jobs and procs execute the refactored
code and access the new relational database.
Maintainability is maximized by refactoring the
JCL during the automated refactoring process
to accommodate for differences in the form and
function of components in the target modernized
environment. For example, many dependencies
that are required for pre-relational database

models can be safely removed because they are
no longer necessary when referencing the newly
migrated database, which is relational. Certain
file handling steps can also be eliminated. If an
organization uses VSAM files, steps will often be
placed in the JCL to backup those files to mitigate
the impact of failure or corruption. However,
modern relational databases enact these steps
automatically, rendering the backup steps in the
JCL unnecessary.

JSR 352 introduces a Java specification for
building, deploying, and running batch
applications and addresses three critical
concepts: a batch programming model, a job
specification language, and a batch runtime. JSR
352 provides developers with clear, reusable
interfaces for construction batch, it provides
job writers with an expression language for
how to execute the steps of a batch execution,
and it exposes a runtime API for initiating and
controlling batch execution.

Job Operator Job Step

Job Repository

ItemReader

ItemProcessor

ItemWriter

*

JES JOB STEP DD

* *

JCL translations: Similarities between JCL
and JSR-352

WJSR 352 defines a Job Specification Language
(JSL) to define batch jobs, a set of interfaces that
describes the artifacts that comprise the batch
programming model to implement batch business
logic, and a batch runtime for running batch jobs
according to a defined life cycle.

The batch runtime is a part of the Java EE 7
runtime and has unfettered access to other
features of the platform, including persistence,
messaging, transaction management, and more.

JSR 352 stops short of job scheduling, as there are
a myriad of products available for this task and
distributed schedulers are often responsible for
jobs across multiple systems, a subset of which
could fall outside the scope of the modernization
effort. Fortunately, the refactored JSR 352 XML
batch enables organizations to easily apply
scheduling mechanisms ranging from EJB timers
and cron, to enterprise schedulers such as BMC
Control-M, IBM Tivoli Workload Scheduler, and
others.

Automated COBOL Refactoring
Maintenance, Refinement, and Extensibility
The design and function of CTU and its output
is focused on empowering developers by
extending native Java concepts and conventions
in a readable, maintainable format. Since the
general program structure is preserved along
with original comments, individuals familiar with
the legacy application can easily navigate the
new Java code. Developers who are accustomed
to modern application practices will experience
familiar Java coding conventions and object-
oriented concepts such as DAO design patterns,
Java native data types, normalized program flow,
and application modularization. Maintainability
is maximized with clone detection and handling,
reusable copybook and data record class
definitions, and the utilization of working storage
fields as private to the program class and
programs as a service, exposing the main entry
point.

The Java produced by CTU is cloud-ready and can
easily be optimized to maximize the cloud’s elastic
architecture, harness cloud-native databases, and
employ modern application practices. Adherence
to native Java concepts and simple integration
with standard frameworks and solutions eases
the transition towards stateless applications and
cloud-native microservices.

To learn more about our approach and
multi-phase methodology to approaching
modernization projects, take a look at our ‘Don’t
Kick the Can Down a Crumbling Road’ whitepaper.

More information
w modernsystems.oneadvanced.com	 e hello@oneadvanced.com

UK +44 0333 230 1884

Ditton Park, Riding Court Road Datchet,
Slough, Berkshire, SL3 9LL

US +1 855-905-4040

3200 Windy Hill Road, Suite 230 West,
Atlanta, GA 30339

© Advanced 2020. All rights reserved. Modern Systems Corporation t/a Advanced, registered in Delaware, USA is a wholly owned subsidiary of
Advanced Computer Software Group Limited t/a Advanced. A list of trading subsidiaries is available at www.oneadvanced.com/legal-privacy.
Advanced recognizes the trademarks of other companies and respective products in this document.

JSL
(Job)

Java EE Application

Ja
va

 E
E

7
Ru

nt
im

e

Batch Artifacts

Batch Runtime

JDBC

Web Container EJB Container

Other EE Components

JMS JPA JTA

= defined by JSR 352

Java EE Application

Batch Artifacts

Batch Runtime

Job1.xml

JobOperator jobOper =
BatchRuntime.getJobOperator();jobOper.st
art(“Job1.xml”,null);

JSR 236
thread

1. First step runs
2. Next step runs

N. Last step runs

Lo
ad

 A
rti

fa
ct

s

Run

JSR 352 support for batch applications and
the Java Platform

 https://modernsystems.oneadvanced.com/whitepapers/dont-kick-the-cobol-can-down-a-crumbling-road/?utm_medium=CampaignPage&utm_source=Content&utm_campaign=COBOLWhitepaper
 https://modernsystems.oneadvanced.com/whitepapers/dont-kick-the-cobol-can-down-a-crumbling-road/?utm_medium=CampaignPage&utm_source=Content&utm_campaign=COBOLWhitepaper

