
CASE STUDY

This case study describes the project, including the automated
refactoring process and AWS architecture, as well as key
lessons learned, business outcomes, and future technology
plans.

Automated Refactoring of a New York Times
Mainframe to AWS with Advanced

The New York Times had a critical business
workload running on a mainframe as the core
IT system supporting the daily Home Delivery
Platform of its newspaper. They collaborated with
Advanced, an AWS Partner Network (APN) Select
Technology Partner, to successfully transform
their legacy COBOL-based application into a
modern Java-based application, which today runs
on Amazon Web Services (AWS).

Using innovative automated refactoring, the
application was modernized to object-oriented
code, and the data was transformed from legacy
indexed-files to a relational database.

The New York Times Context and Objectives
The New York Times is an American newspaper
with worldwide influence and readership.
Founded in 1851, the paper has won 125 Pulitzer
Prizes, more than any other newspaper. The
Times is ranked 17th in the world by circulation
and second in the United States.

The company’s core-business application
managed daily home delivery of the newspaper
since 1979, supporting a line of business worth
more than $500 million annually. It represented

years of accumulated experience and knowledge,
and yet it significantly resisted modification and
evolution.

In addition, the IBM Z mainframe running the z/
OS operating system was expensive to operate in
comparison to more modern platforms that had
evolved at the company. It needed modernization
to reduce operating costs and enable the
convergence of the Digital Platform with the
Home Delivery Platform.

An attempt to manually rewrite the home
delivery application between 2006 and 2009
failed. In 2015, an evaluation of alternate
approaches determined that a second attempt
at redeveloping the application would have
been much more expensive, and an alternative
emulator rehosting would have continued to lock-
up data in proprietary technology.

With mounting pressure to quickly lower costs,
the chosen strategy was to migrate code and
data with automated refactoring. This approach
promised functional equivalence, lower
operational cost, and easier integration with
modern technologies.

Client >
New York Times

Sector >
Mass Media

Project >
Legacy COBOL-based
application to a modern
Java-based application,
which runs on Amazon
Web Services (AWS)

https://www.nytimes.com
https://aws.amazon.com/partners/

Automated Refactoring of a New York Times
Mainframe to AWS with Advanced
Source Mainframe Workload
The mainframe application, named CIS on the
mainframe and rebranded to Aristo after the
migration, executed business-critical functionality
such as billing, invoicing, customer accounts,
delivery routing, product catalog, pricing, and
financial reporting.

CIS was a z/OS-based CICS/COBOL application
with a BMS-based 3270 interface accessing
VSAM KSDS business data. Batch processing
was supported by JCL jobs with CA7 for job
scheduling.

In 2015, CIS had grown to more than 2 million
lines of COBOL code, 600 batch jobs, and 3,500
files sent daily to downstream consumers and
systems. It consumed around 3 TB of hot data
made up of 2 TB of VSAM files, and 1 TB of QSAM
sequential files. It used 20 TB of backup cold
storage.

Migration with Automated Refactoring
The New York Times selected an automated
refactoring approach which retains functional
equivalence and critical business logic
while converting core legacy applications to
maintainable, migrated object-oriented Java.
The code is analyzed during the assessment to
determine cloud-readiness and the required
effort to obtain the desired level of elasticity
(i.e. horizontal scalability and vertical scalability)
required by the application workloads.

Our COBOL-to-Universal (CTU) software solution
supports typical mainframe-based COBOL
application components, including CICS, JCL, and
common utilities, such as IDCAMS and

SORT, in addition to data stores like DB2 for z/OS,
IMS, VSAM, and IDMS databases.

The New York Times used CTU and followed an
8-step methodology:

 > Step 1 performs an automated inventory of
the mainframe and populates a repository of
components to be migrated.

 > Step 2 consists of a detailed analysis of
the applications, data model, architecture
preferences, coding styles, database
connections, error handling, and refactoring
options. All of this leads to the definition of
how to piecemeal the code transformation
with work packets and the overall test strategy.

 > In Step 3, for each work packet, the data model
is defined and created in the target database.

 > Step 4 automatically generates programs
and processes for unloading, transforming,
validating, and loading of data from the source
data store to the target database.

 > In step 5, our CTU software is used to reverse-
engineer the COBOL code into an intermediate
language, and then to forward-engineer the
target Java code.

 > Step 6 performs regression tests for each
work packet, making sure there is functional
equivalence between the source mainframe
programs and the new Java code.

 > Step 7 is the user acceptance test execution
process.

 > In Step 8, once these tests are successful, the
cutover to production takes place.

Figure 1 - Automated Refactoring Steps

Automated Refactoring of a New York Times
Mainframe to AWS with Advanced
Using our CTU software, the resulting Java
application became object-oriented and
separated into three layers: presentation logic,
business logic, and data access.

To maintain the same user experience, CICS BMS
Maps were migrated to equivalent web pages
which mimic the original 3270 screens as closely
as possible. Each COBOL program was refactored
to a Java class, and JCL was converted to JSR-352
XML using the Spring Batch runtime for Java.
VSAM KSDS files were migrated to a relational
Oracle database. During the refactoring process,
all VSAM records were analyzed and a DDL
generated for each of the best layouts chosen.

The table in Figure 2 shows the technology
mapping between the legacy mainframe stack
and the target AWS stack.

Figure 2 - Source and target technology
mapping

Replacement components were developed in
situations where legacy application dependencies
were not supported by the Advanced toolset (e.g.
REXX, GVEXPORT), when off-the-shelf software
packages were not available as a substitute, or if
it made more sense to make use of capabilities of
the new environment (vendor database backups
and restore points, file system snapshots, etc.).

Functional Equivalence Testing
It was critical to have functional equivalence
between the Java application and the COBOL
application. Component groups assembled
related components that would be runnable
and testable together as a single entity through
existing externally accessible interfaces, such as
web services, user interface screens, database
tables, and files.

Automated Refactoring of a New York Times
Mainframe to AWS with Advanced
Testing accounted for approximately 70-80
percent of the time spent on the project. The
testing process was broken down into stages,
with each stage progressively increasing in
scope and level of difficulty in isolating the root-
cause of test failures.of capabilities of the new
environment (vendor database backups and
restore points, file system snapshots, etc.).

 > Stage 1 Pre-Delivery Test: Performed by
Modern Systems prior to delivering the
refactored code.

 > Stage 2 Data Migration Validation: Verified the
data is the same between the source VSAM
and the target relational database.

 > Stage 3 Component Group Test: Verified the
functional behavior with one batch job, one or
more screen, one Web Service call.

 > Stage 4 Batch Process Regression Test: Using
static test data (the exact same test data every
day) to verify the end-to-end batch process
and perform regression testing.

 > Stage 5 Batch Process Comparison Test:
Using dynamic test data to verify the end-
to-end batch with the current day data, and
comparing the output between legacy and
modernized systems.

 > Stage 6 Batch Process Performance Test: Using
production data.

 > Stage 7 System Integration: This was done in
collaboration with other teams and systems
within the organization. New transactions are
entered via client systems, processed by the
batch, and flow to downstream consumers via
reports and file feeds.

For these stages, test coverage needed to be
high. It can be very time consuming and complex
to create test cases, especially for batch jobs.
Automation was critical to launch and analyze test
cases repeatedly and rapidly.

Target AWS Architecture
As the project progressed, The New York Times
pivoted on its overall data center strategy
to make Cloud the preferred deployment
environment. After less than a year of running in
a private data center, Aristo was migrated to AWS.
The team had gained significant knowledge of
what a successful migration looked like, enabling
a migration to AWS with minimal impact to the
business.

As shown in Figure 3, once migrated to AWS,
the system was broken up into four main
components:

Figure 3 - Target Aristo AWS architecture
components

Automated Refactoring of a New York Times
Mainframe to AWS with Advanced

 > Front End system provides internal operators
the ability to manage home delivery
subscriptions.

 > API system provides SOAP web services to
other systems.

 > Reporting system builds reports for finance
department.

 > Batch is the main system where all of the
nightly jobs execute. The jobs can run on any
instance and the source and destination of
the job data is stored on Amazon Elastic File
System (Amazon EFS).

The Both the API and Front End systems are
within Auto Scaling Groups, providing the ability
to respond to a large number of requests. In
steady state, the API system uses four m5.xlarge
instances and the Front End system uses two
m5.xlarge instances. Reporting also uses two
m5.xlarge instances. The Batch system is much
larger with three m5.4xlarge instances due to the
heavy computation needed to run the jobs.

In order to speed up delivery of releases, a
Continuous Integration and Continuous Delivery
(CI/CD) pipeline was created including:

 > Gradle for building and packaging artifacts

 > Artifactory for storage and promotion of
artifacts

 > Jenkins for deployment and orchestration

 > Ansible for configuration management

 > Hashicorp Vault for secrets management

Migration Timeline
The transformation of the application powering
the Home Delivery Platform began in 2015. It was
a two-phase process.

Automated Refactoring
This phase lasted around two years and included
both the COBOL-to-Java transformation as well
as the VSAM-to-relational database conversion,
resulting in the Aristo application being launched
in production on-premises.

Around the end of this phase, The New York
Times announced its cloud strategy impacting the
future of Aristo platform and triggering the next
phase.

AWS Migration and Enhancements
Once the application was tested and stabilized,
the work began in August 2017 to move the
application to the AWS Cloud. This was an
8-month project, which also included the
following changes:

 > From Oracle RAC to Oracle EE

 > From Isilon to EFS

 > Upgraded Control-M from version 7 to version
8

 > Upgraded from FTP to SFTP/S3

 > Rebuilt CI/CD pipeline (from Puppet to Ansible)

Figure 4 - Mainframe to AWS migration
timeline

https://aws.amazon.com/efs/
https://aws.amazon.com/efs/
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html

Automated Refactoring of a New York Times
Mainframe to AWS with Advanced

AWS Migration and Enhancements
Once in production on AWS in March 2018, Aristo
benefited from maintenance and enhancements
including promotion code table expansion,
premium Home Delivery (HD) with new digital and
paper offerings, and AWS cost optimizations.

Looking ahead, The New York Times is focused on
these future improvements:

 > Breaking down the application monolith into
microservices.

 > Continuing convergence of the digital
subscription platform capabilities, including
payments, product catalog, customer
accounts, financial accounting.

 > Easing access to business data.

 > Increasing the use of cloud-native technologies
and AWS managed services.

 > AWS Backup for Amazon EFS volumes.

Lessons Learned
The most significant lesson learned in the project
was around testing, which ended up being the
most time-consuming and underestimated part
of the project by far (70-80 percent of the time).
Test cases need to be granular enough and
automated.

With the mainframe in operation for more than
35 years, the COBOL application had accumulated
a fair amount of obsolete code due to a lack of

adequate maintenance. It’s a best practice to
identify this code and remove it, which reduces
the amount of refactoring and testing work to do.

Mainframes are typically backend processing
systems for other servers. Aristo generated
more than 3,500 data file feeds and reports for
downstream consumers daily. Having a good
inventory of all the consumers and interfaces
facilitates the modernization and harmonization
of the communications.

For Java code maintenance or new feature
developments, it’s a good practice to cross-train
existing mainframe COBOL developers with Java
skills. This allows them to provide both functional
insight and knowledge about specific coding
standards for the application, such as naming
conventions or overall code structure.

Gaining a deep application understanding during
the analysis and planning phase is important in
order to define work packets, which are about
the same size and complexity and allow reusing
learnings for later packets. For example, it’s good
to start with migrating the batch jobs that are
often of high complexity and demanding.

If The New York Times had its Cloud strategy
already in place before starting the mainframe
migration, the company would have chosen to
migrate the mainframe directly to AWS, avoiding
the extra work for designing and implementing
the on-premises Aristo deployment.

https://aws.amazon.com/backup/

Automated Refactoring of a New York Times
Mainframe to AWS with Advanced

More information
w modernsystems.oneadvanced.com e hello@oneadvanced.com

UK +44 0333 230 1884

Ditton Park, Riding Court Road Datchet,
Slough, Berkshire, SL3 9LL

US +1 855-905-4040

3200 Windy Hill Road, Suite 230 West,
Atlanta, GA 30339

© Advanced 2020. All rights reserved. Modern Systems Corporation t/a Advanced, registered in Delaware, USA is a wholly owned subsidiary of
Advanced Computer Software Group Limited t/a Advanced. A list of trading subsidiaries is available at www.oneadvanced.com/legal-privacy.
Advanced recognizes the trademarks of other companies and respective products in this document.

Project Benefits for The New York Times
While the modernization project began as a cost-
cutting exercise, ultimately The New York Times
took methodical and incremental steps toward
more cutting edge technology adoption. All of
this was done in an effort to improve customer
service and gain competitive advantage in a
unique industry that has seen significant market
dynamic shifts since the project first began in
2015.

This project allowed convergence on a common
technology stack (Java and Oracle on AWS) joining
the Digital Subscription Platform that is now run,
built, and maintained by the same Subscription
Platforms group within The New York Times
Technology organization.

The team is accelerating how it builds software
on the new platform by adopting an agile
methodology and CI/CD pipeline. In addition,
there is now easier access to data gaining
business and technology insights, and more rapid
use of cloud-native technologies.

Aristo went live on August 28, 2017. During the
first year, it has billed over half a billion dollars
in subscription revenue, processed nearly 6.5
million transactions, and continued to route the
daily paper to The New York Times’ home delivery
subscribers across the United States.

Remarkably, Aristo today costs 70% less to
operate per year than it did to run on the
mainframe in 2015, giving The New York Times a
significant cost savings.

